Infrared Spectra of ¹⁴C₂H₂ and ¹²C¹⁴CH₂: The v₅ Band

S. Dobos and F. Kling

Institute of Isotopes, Hungarian Academy of Sciences, Budapest, Hungary

- G. Winnewisser
- I. Physikalisches Institut, Universität zu Köln, Köln, BRD
- G. Keresztury

Central Research Institute of Chemistry, Hungarian Academy of Sciences. Budapest, Hungary

Z. Naturforsch. 44a, 640-644 (1989); received May 11, 1989

The infrared absorption lines of a mixture of $^{14}\mathrm{C}_2\mathrm{H}_2$ and $^{12}\mathrm{C}^{14}\mathrm{CH}_2$ around 725 cm $^{-1}$ have been recorded with a high resolution (0.04 cm $^{-1}$) FTIR spectrometer. Rotational structures of P, R and Q branches of the v_5^1 bands were analyzed and molecular constants v_0 , B', B'', D' and D'' calculated.

Introduction

Although a very large number of papers on the high resolution infrared spectrum of acetylene and its deuterated species were published in recent years, the spectra of isotopic carbon species received comparatively little attention. The first paper reporting investigations of $^{12}C^{13}CH_2$ and $^{13}C_2H_2$ was published by Lafferty and Thibault and it was based on spectra recorded in the near infrared region ($\sim 2600 \text{ cm}^{-1}$), indirectly yielding rotational constants for v_5^1 , as well as v_3 [1]. Scott and Rao recorded for the first time the v_5^1 band of $^{12}C^{13}CH_2$ [2]. Using tunable diode laser, Das et al. recorded several Q branch lines of the $2v_5^0-v_5^1$ band of $^{12}C^{13}CH_2$ and $^{13}C_2H_2$ calculating high precision molecular constants for the v_5^1 and $2v_5^0$ states [3].

For 14 C₂H₂ only one medium resolution (0.3 cm⁻¹) infrared measurement recorded by Mink and Kemény is known, with a preliminary vibrational analysis of v_3 , $v_4^1 + v_5^1$ and v_5^1 bands. In an attempt to determine molecular constants, these authors encountered some difficulties due to the insufficient accuracy of their measurements [4].

The prime object of the current investigation is to record the infrared spectrum of $^{14}C_2H_2$ and $^{12}C^{14}CH_2$ under high resolution. This article presents the observational results and the interpretation of the rotational structure of v_5^1 band.

Reprint requests to Prof. Dr. G. Winnewisser, I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-5000 Köln 41.

Experimental

¹⁴C substituted acetylene gas was prepared by the following reaction:

2 BaCO₃+5 Ba →
$$(700^{\circ}, Ar)$$
 → BaC₂+6 BaO,
BaC₂+2 H₂O → (room temp., HCl)
→ C₂H₂+Ba(OH).

Due to the relatively high 12 C content of the starting material of Ba 14 CO $_3$, a mixture of about 3:2 of 14 C $_2$ H $_2$ and 12 C 14 CH $_2$, some 5–7 percents of 14 C $_2$ H $_2$ and, as a by-product, 12,14 C $_2$ H $_6$ have been formed. The reaction was carried out in a special vacuum system, and the resulting gas was then dried and collected in a liquid nitrogen trap.

The infrared spectra were recorded on a Nicolet 170SX FTIR interferometer between 4000 and 400 cm⁻¹ at a resolution of 0.04 cm⁻¹, in a 21 cm gas cell, using 30, 5 and 2 Torr pressures.

Results

In Fig. 1 details of the spectrum recorded at 2 Torr pressure are shown. Due to the presence of three main isotopic species ($^{14}C_2H_2$, $^{12}C^{14}CH_2$ and $^{12}C_2H_2$) of commensurable concentrations, and in addition to the high number of their different "hot" bands, the spectral bands were very often strongly confused by overlapping. Therefore, the assignments of relatively low intensity "hot" bands were complicated by the fact

0932-0784 / 89 / 0700-0640 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Band	0000011-	0000000	$(\Sigma_g^+ - \Pi_u)$	of $^{14}\mathrm{C}_2\mathrm{H}_2$	T	(units	in cm ⁻¹)		
J	obs.	calc.	o - c	weight	obs.	calc.	o-c weight		
R(J)					P(J)				
00	727.724	.723	.001	1.0000					
01	729.865	.858	.007	0.0006					
02	731.985	.991	006	0.0006	721.314	.315	001 1.0000		
03	734.123	.124	001	1.0000	719.176	.178	002 1.0000		
04	736.257	.257	.000	1.0000	717.036	.040	004 1.0000		
05	738.394	.388	.006	1.0000	714.899	.902	003 1.0000		
06	740.524	.519	.005	1.0000	712.763	.763	.000 1.0000		
07	742.647	.648	001	1.0000	710.620	.624	.004 1.0000		
08	744.785	.777	.008	1.0000	708.482	.484	002 1.0000		
09	746.900	.905	005	1.0000	706.340	.344	004 1.0000		
10	749.033	.032	.001	1.0000	704.202	.204	002 1.0000		
11	751.156	.157	001	1.0000	702.060	.063	003 1.0000		
12	753.283	.282	.001	1.0000	699.922	.922	.000 1.0000		
13	755.401	.406	005	1.0000	697.782	.780	.002 1.0000		
14	757.534	.528	.006	1.0000	695.643	.638	.005 1.0000		
15	759.646	.649	003	1.0000	693.501	.496	.005 1.0000		
16	761.770	.769	.001	1.0000	691.363	.354	.009 0.0006		
17	763.888	.888	.000	1.0000	689.223	.212	.011 0.0006		
18	766.004	.005	001	1.0000	687.081	.070	.011 0.0006		
19	768.115	.121	006	1.0000	684.932	.927	.005 1.0000		
20	770.240	.236	.004	1.0000	682.781	.784	003 1.0000		
21	772.356	.350	.006	1.0000	680.638	.642	004 1.0000		
22	774.480	.462	.018	0.0006	678.497	.499	002 1.0000		
23	776.575	.572	.003	1.0000	676.357	.356	.001 1.0000		
24	778.684	.681	.003	1.0000	674.215	.213	.002 1.0000		
25	780.787	.788	001	1.0000	672.078	.071	.002 1.0000		
26	782.897	.894	.003	1.0000	669.928	.928	.000 1.0000		
27	784.997	.999	002	1.0000	667.790	.786	.004 1.0000		
28	787.097	.101	002	1.0000	665.648	.644	.004 1.0000		
20 29							.004 1.0000		
	789.203	.202	.001	1.0000	663.502	.502			
30	791.299	.301	002	1.0000	661.352	.360	008 0.0006		
31	793.393	.398	005	1.0000	659.214	.218	004 1.0000		
32	795.495	.494	.001	1.0000	657.072	.077	005 1.0000		
33	797.582	.588	006	1.0000	654.931	.936	005 1.0000		
34	799.682	.680	.002	1.0000	652.792	.795	003 1.0000		
35	801.766	.769	003	1.0000	650.653	.654	001 1.0000		
36	803.851	.857	006	1.0000	648.514	.514	.000 1.0000		
37	805.946	.943	.003	1.0000	646.375	.374	.001 1.0000		
38	808.032	.027	.005	1.0000	644.241	.235	.006 1.0000		
39	810.112	.109	.003	1.0000	642.096	.096	.000 1.0000		
40	812.163	.189	026	0.0006	639.960	.958	.002 1.0000		
41	814.270	.266	.004	1.0000	637.818	.820	002 1.0000		
42	816.348	.342	.006	1.0000	635.682	.683	001 1.0000		
43	818.412	.415	003	1.0000	633.565	.546	.019 0.0006		
44	820.483	.485	002	1.0000					
45	822.554	.554	.000	1.0000					
46	824.614	.620	006	1.0000	Standa	rd dev	iation .00037		
47	826.687	.684	.003	1.0000	Samuel de lation 100001				

Band	0000011-	$0000^{0}0^{0}$	$(\Sigma_g^+ - \Pi_u)$	of ¹² C ¹⁴ CH ₂		(units	in cm ⁻¹)	
J	obs.	calc.	o - c	weight	obs.	calc.	o - c	weight
R(J)					P(J)			
00	729.740	.739	.001	1.0000				
01	731.985	.985	.000	1.0000	725.240	.246	006	1.0000
02	734.236	.230	.006	1.0000	722.998	.998	.000	1.000
03	736.472	.475	003	1.0000	720.745	.750	005	1.000
04	738.725	.719	.006	1.0000	718.506	.502	.004	1.000
05	740.962	.963	001	1.0000	716.253	.253	.000	1.000
06	743.212	.205	.007	1.0000	714.004	.004	.000	1.000
07	745.447	.447	.000	1.0000	711.758	.754	.004	1.000
08	747.683	.688	005	1.0000	709.503	.504	001	1.000
09	749.935	.928	007	1.0000	707.253	.254		1.000
10	752.168	.168	.000	1.0000	705.006	.754	.002	1.000
11	754.403	.406	003	1.0000	702.752	.754		1.000
12	756.645	.643	.002	1.0000	700.498	.503	005	1.000
13	758.885	.880	.005	1.0000	698.256	.252	.004	1.000
14	761.118	.115	.003	1.0000	696.003	.002		1.000
15	763.348	.349	001	1.0000	693.744	.751		1.000
16	765.578	.583	005	1.0000	691.495	.500		0.000
17	767.810	.815	005	1.0000	689.223	.249	026	0.000
18	770.042	.045	003	1.0000	687.995	.998	003	1.000
19	772.270	.275	005	1.0000	684.747	.748		1.000
20		4.503		0.0000	682.502	.497		1.000
21	776.726	.730	004	1.0000	680.245	.247		1.000
22	778.957	.956	.001	1.0000	677.996	.996		1.000
23	781.187	.180	.007	1.0000	675.750	.746		1.000
24	783.408	.403	.005	1.0000	673.495	.496		1.000
25	785.618	.624	006	1.0000	671.243	.247		1.000
26	787.845	.844	.001	1.0000	669.003	8.997		1.000
27	790.070	.063	.007	1.0000	666.746	.748		1.000
28	792.276	.279	003	1.0000	664.500	.500		1.000
29	794.498	.494	.004	1.0000	662.253	.252		1.000
30	796.705	.708	003	1.0000	660.000	.004		1.000
31	798.918	.920	002	1.0000	657.763	.757		1.000
32	801.132	.129	.003	1.0000	655.505	.510		1.000
33	803.334	.338	004	1.0000	653.270	.263		1.000
34	805.543	.544	001	1.0000	651.017	.017		1.000
35	807.747	.748	001	1.0000	648.777	.772		1.000
36	809.954	.951	.003	1.0000	646.525	.527	002	1.000
37	812.160	.151	.009	0.0100		4.283		0.000
38	814.350	.350	.000	1.0000	642.037	.040	003	1.000
39	816.545	.546	001	1.0000		9.797		0.00
40	818.738	.741	003	1.0000	637.558	.555		1.000
41	820.932	.933	001	1.0000		5.314		0.000
42	823.128	.123	.005	1.0000		3.073		0.000
43		5.311		0.0000	630.830	.834	004	1.000

that often only a limited number of adjacent J lines of a given series could be located, and hence they will be omitted here. On the other hand, complete series of the dominating v_5^1 fundamental bands were assigned up to about J=47 for $^{14}C_2H_2$ and J=43 for $^{12}C^{14}CH_2$. As expected, the v_5^1 band system, which is due to the transition $\Sigma_g^+ - \Pi_u$, showed for the symmetric species $^{14}C_2H_2$ the expected 3:1 alternating intensities in the P and R lines. For both isotopic species the Q branches were partly resolved by diode laser spectroscopy, as shown in Figure 2.

In order to determine the band centers and rotational constants, we used a least squares program to fit the experimental data using to the following standard expression:

$$v(J'-J'') = v_0 + B'[J'(J'+1) - l'^2] - D'[J'(J'+1) - l'^2]^2$$

$$+ H'[J'(J'+1) - l'^2]^3 - B''[J''(J''+1) - l''^2]$$

$$+ D''[J''(J''+1) - l''^2]$$

$$- H''[J''(J''+1) - l''^2]^3.$$
(1)

Here $v_0 = G_0(v', l') - G_0(v'', l'')$ is the vibrational band origin, l' = 0 for the upper Σ state, l'' = 1 for the lower Π state, and the constants of the higher state refer to the e sublevels in the case of R and P transitions, while those of the lower state to the f sublevels at the Q(J) lines. In the latter case, an unambiguous analysis was defined, due to the overlaps of Q lines by lines from other bands. Therefore we used in our calculations, instead of (1), the approximation

$$v(J) = v_0 - B' - D' + (B' - B'') J(J+1) + (D' - D'') [J(J+1)]^2.$$
(2)

In Table 1 we collected the observed frequencies of both P and R lines of $^{14}\mathrm{C}_2\mathrm{H}_2$, the differences between observed and calculated values and the weights used. Table 2 shows the respective data of $^{12}\mathrm{C}^{14}\mathrm{CH}_2$. The data concerning the Q(J) branches of both isotopic species are collected in Table 3.

Concerning the accuracy of our measurements, the influence of the H constants was expected to be negligible also in the case of P and R branches. Calculating from the Q lines, even the $v_0 - B' - D'$ values (725.559(3) and 725.498(5), for $^{14}\mathrm{C}_2\mathrm{H}_2$ and $^{12}\mathrm{C}^{14}\mathrm{CH}_2$, respectively), and those of $B_\mathrm{f}' - B_\mathrm{f}''$ (0.003779(26) and 0.003946(33), respectively) may be considered as a rough estimate due to the uncertainties of about ± 1 in assignments to the J numbers, besides the difficulties involved by the overlaps as mentioned above.

Table 3. $\label{eq:QBranch} \mbox{Q Branch lines of the band } 0000^01^1 - 0000^00^0 \\ (\Sigma_g^+ - \Pi_u) \mbox{ of } ^{14}{\rm C}_2{\rm H}_2 \mbox{ and } ^{12}{\rm C}^{14}{\rm CH}_2 \mbox{ (units in cm}^{-1)} \mbox{.}$

<u>J</u>	obs.	calc.	o - c	weight	obs.	calc.	o - c	weight
$^{14}\mathrm{C}_{2}\mathrm{H}_{2}$					$^{12}{ m C}^{14}{ m CH}_2$			
06	725.713	.717	004	1.0000	727.670	.664	.006	1.0000
07	725.773	.769	.004	1.0000	727.724	.720	.004	1.0000
08	725.829	.829	.000	1.0000	727.790	.783	.007	1.0000
09	725.893	.896	003	1.0000	727.853	.855	002	1.0000
10	725.983	.970	.013	1.0000	727.913	.935	022	1.0000
11	726.060	.051	.009	0.0100	728.015	.023	008	1.0000
12	726.135	.138	003	1.0000	728.122	.120	.002	1.0000
13	726.224	.233	009	1.0000	728.242	.225	.017	1.0000
14	726.338	.334	.004	1.0000	728.335	.338	003	1.0000
15	726.438	.442	004	1.0000	728.454	.460	006	1.0000
16	726.555	.556	001	1.0000	728.602	.590	.011	1.0000
17	726.678	.676	.002	1.0000	728.726	.730	004	1.0000
18	726.797	.803	006	1.0000	728.877	.878	001	1.0000
19	726.943	.935	.008	1.0000	729.028	.035	007	1.0000
20	727.070	.072	002	1.0000	729.198.	.201	003	1.0000
21	727.217	.216	.001	1.0000	729.383	.376	.007	1.0000
22	727.368	.364	.004	1.0000		.561		0.0000
23		.517		0.0000		.755		0.0000
24	727.670	.676	006	1.0000	729.960	.959	.001	1.0000
25		7.838		0.0000	730.174	.172	.002	1.0000
26		8.005		0.0000		.395		0.0000
27		8.167		0.0000	730.626	.629	003	1.0000

The calculated band origin frequencies, band centers and molecular constants are summarized in Table 4, together with the respective data for $^{12}C_2H_2$, $^{13}C_2H_2$ and $^{12}C^{13}CH_2$. It can be seen that the errors of our data are at the level of those for $^{12}C_2H_2$, reported by Palmer et al. [5], in accordance with an identical resolution of 0.04 cm $^{-1}$ for both measurements.

However, the errors of the constants calculated for the f sublevels from the Q lines are in both cases similarly high, when comparing the band center frequency estimated from the Q branch by Palmer et al. (729,1503 cm⁻¹) with that obtained with very high precision infrared tunable diode laser measurements by Das et al. (729,15639 (19) cm⁻¹ in [5]) or their considerably differing values of B'_f = 1.181112 (19) and 1.178768 (23), respectively, which might be accounted for by an error in Palmer's assignment of the lines to the J numbers by ± 1 (or more). On the other hand,

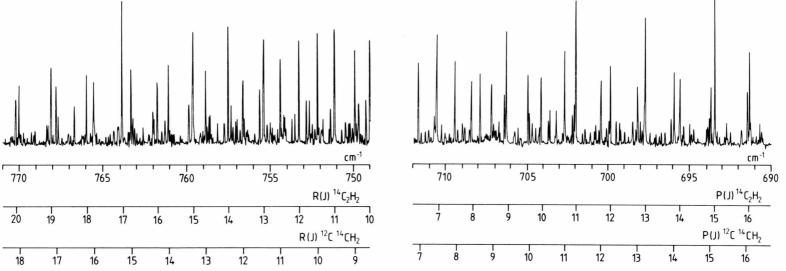


Fig. 1. Parts of the infrared spectrum of the mixture of ${}^{14}\text{C}_2\text{H}_2$ and ${}^{12}\text{C}^{14}\text{CH}_2$ in the v_5^1 region (recorded at 2 Torr). – The intensity alternation observed for the ${}^{14}\text{C}_2\text{H}_2$ is clearly seen for the P branch lines, whereas the R branch is more confused.

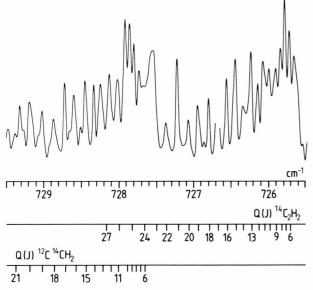


Fig. 2. Diode laser spectra of the Q branches of v_5^1 of $^{14}{\rm C_2H_2}$ and $^{12}{\rm C^{14}CH_2}$.

Table 4. Spectroscopic constants for the $0000^01^1-0000^00^0$ ($\Sigma_{\rm g}^+-\Pi_{\rm u}$) transitions of C_2H_2 (units in cm $^{-1}$).

Molecule	$v_0 = G'_0 - G''_0$	$v_0 - B' l'^2 + B'' l''^2$? B'	<i>B</i> "	$D'\times 10^6$	$D''\times 10^6$	Ref.
¹² C ₂ H ₂	(e, f) 730.3314(16) (f) 730.33281(19)	(e) 729.1550 (f) 729.1503 (f) 729.15639(19)	(e) 1.176412(18) (f) 1.181112(19) (f) 1.178768(23)	1.176608(14)	1.610(9) 1.655(10)	1.610(7)	[5] [5] [3]
$^{12}C^{13}CH_{2}$		(728.23) a		1.14840(2)		1.56(2)	[1]
$^{13}C_{2}H_{2}$		(726.98) a		1.11949(4)		1.47(2)	[1]
¹² C ¹⁴ CH ₂	(e) 728.6156(7)	(e) 727.4926(7) (f) 727.4980(48)	(e) 1.123267 (20) (f) 1.12748 (4) ^b	1.123533(20)	1.475(9)	1.467(9)	this work
$^{14}\text{C}_{2}\text{H}_{2}$		(e) 725.5877(7) (f) 725.5916(33)	(e) 1.067635(19) (f) 1.07175(3) ^b	1.067972(19)	1.366(7)	1.359(8)	this work

^a Predicted value

^b Value estimated from $\mathbf{B}_f' - \mathbf{B}_f'$

the estimated values of constants B'_f , for ${}^{14}C_2H_2$ and ${}^{12}C^{14}CH_2$, at this level of accuracy, seem to be realistic in comparison to that of ${}^{12}C_2H_2$.

In future we plan to measure highly precise diode laser spectra of selected hydrocarbons, including ¹⁴C-isotopically substituted acetylene. Hydrocarbons have been discovered as constituents of planetary atmospheres. Their detailed assignment requires highly

- W. J. Lafferty and R. J. Thibault, J. Mol. Spectrosc. 14, 79 (1964).
- [2] J. F. Scott and K. Narahari Rao, J. Mol. Spectrosc. 16, 15 (1965).
- [3] P. P. Das, V. Malathy Devi, and K. Narahari Rao, J. Mol. Spectrosc. 84, 313 (1980).

accurate laboratory data sets, which we plan to provide with future diode laser work.

Acknowledgements

S. Dobos gratefully acknowledges the support from the DFG during his stay at Cologne. – The work in Cologne was supported by the Deutsche Forschungsgemeinschaft DFG through special grant SFB-301.

- [4] J. Mink and G. Kemeny, Spectrochim. Acta A 33, 277 (1977).
- [5] K. F. Palmer, M. E. Mickelson, and K. Narahari Rao, J. Mol. Spectrosc. 44, 131 (1972).